Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(731): eadd6883, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38266108

RESUMEN

Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). DS is a gene dosage disorder that results in multiple phenotypes including congenital heart defects. This clinically important cardiac pathology is the result of a third copy of one or more of the approximately 230 genes on Hsa21, but the identity of the causative dosage-sensitive genes and hence mechanisms underlying this cardiac pathology remain unclear. Here, we show that hearts from human fetuses with DS and embryonic hearts from the Dp1Tyb mouse model of DS show reduced expression of mitochondrial respiration genes and cell proliferation genes. Using systematic genetic mapping, we determined that three copies of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1a) gene, encoding a serine/threonine protein kinase, are associated with congenital heart disease pathology. In embryos from Dp1Tyb mice, reducing Dyrk1a gene copy number from three to two reversed defects in cellular proliferation and mitochondrial respiration in cardiomyocytes and rescued heart septation defects. Increased dosage of DYRK1A protein resulted in impairment of mitochondrial function and congenital heart disease pathology in mice with DS, suggesting that DYRK1A may be a useful therapeutic target for treating this common human condition.


Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Síndrome de Down/genética , Genes Mitocondriales , Cardiopatías Congénitas/genética , Miocitos Cardíacos , Trisomía
2.
Cells ; 12(23)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067160

RESUMEN

Stefin B (cystatin B) is an inhibitor of lysosomal and nuclear cysteine cathepsins. The gene for stefin B is located on human chromosome 21 and its expression is upregulated in the brains of individuals with Down syndrome. Biallelic loss-of-function mutations in the stefin B gene lead to Unverricht-Lundborg disease-progressive myoclonus epilepsy type 1 (EPM1) in humans. In our past study, we demonstrated that mice lacking stefin B were significantly more sensitive to sepsis induced by lipopolysaccharide (LPS) and secreted higher levels of interleukin 1-ß (IL-1ß) due to increased inflammasome activation in bone marrow-derived macrophages. Here, we report lower interleukin 1-ß processing and caspase-11 expression in bone marrow-derived macrophages prepared from mice that have an additional copy of the stefin B gene. Increased expression of stefin B downregulated mitochondrial reactive oxygen species (ROS) generation and lowered the NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in macrophages. We determined higher AMP-activated kinase phosphorylation and downregulation of mTOR activity in stefin B trisomic macrophages-macrophages with increased stefin B expression. Our study showed that increased stefin B expression downregulated mitochondrial ROS generation and increased autophagy. The present work contributes to a better understanding of the role of stefin B in regulation of autophagy and inflammasome activation in macrophages and could help to develop new treatments.


Asunto(s)
Cistatina B , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP , Cistatina B/fisiología , Inflamasomas/metabolismo , Interleucina-1 , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR , Factores de Transcripción
3.
Phytopathology ; 113(9): 1745-1760, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37885045

RESUMEN

The success of virus transmission by vectors relies on intricate trophic interactions between three partners, the host plant, the virus, and the vector. Despite numerous studies that showed the capacity of plant viruses to manipulate their host plant to their benefit, and potentially of their transmission, the molecular mechanisms sustaining this phenomenon has not yet been extensively analyzed at the molecular level. In this study, we focused on the deregulations induced in Arabidopsis thaliana by an aphid vector that were alleviated when the plants were infected with turnip yellows virus (TuYV), a polerovirus strictly transmitted by aphids in a circulative and nonpropagative mode. By setting up an experimental design mimicking the natural conditions of virus transmission, we analyzed the deregulations in plants infected with TuYV and infested with aphids by a dual transcriptomic and metabolomic approach. We observed that the virus infection alleviated most of the gene deregulations induced by the aphids in a noninfected plant at both time points analyzed (6 and 72 h) with a more pronounced effect at the later time point of infestation. The metabolic composition of the infected and infested plants was altered in a way that could be beneficial for the vector and the virus transmission. Importantly, these substantial modifications observed in infected and infested plants correlated with a higher TuYV transmission efficiency. This study revealed the capacity of TuYV to alter the plant nutritive content and the defense reaction against the aphid vector to promote the viral transmission.


Asunto(s)
Áfidos , Arabidopsis , Luteoviridae , Virus de Plantas , Animales , Enfermedades de las Plantas , Insectos Vectores , Arabidopsis/genética , Luteoviridae/fisiología
4.
Front Behav Neurosci ; 17: 1294558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173978

RESUMEN

Background: Autism spectrum disorders affect more than 1% of the population, impairing social communication and increasing stereotyped behaviours. A micro-deletion of the 16p11.2 BP4-BP5 chromosomic region has been identified in 1% of patients also displaying intellectual disabilities. In mouse models generated to understand the mechanisms of this deletion, learning and memory deficits were pervasive in most genetic backgrounds, while social communication deficits were only detected in some models. Methods: To complement previous studies, we itemized the social deficits in the mouse model of 16p11.2 deletion on a hybrid C57BL/6N × C3H.Pde6b+ genetic background. We examined whether behavioural deficits were visible over long-term observation periods lasting several days and nights, to parallel everyday-life assessment of patients. We recorded the individual and social behaviours of mice carrying a heterozygous deletion of the homologous 16p11.2 chromosomic region (hereafter Del/+) and their wild-type littermates from both sexes over two or three consecutive nights during social interactions of familiar mixed-genotype quartets of males and of females, and of same-genotype unfamiliar female pairs. Results: We observed that Del/+ mice of both sexes increased significantly their locomotor activity compared to wild-type littermates. In the social domain, Del/+ mice of both sexes displayed widespread deficits, even more so in males than in females in quartets of familiar individuals. In pairs, significant perturbations of the organisation of the social communication and behaviours appeared in Del/+ females. Discussion: Altogether, this suggests that, over long recording periods, the phenotype of the 16p11.2 Del/+ mice was differently affected in the locomotor activity and the social domains and between the two sexes. These findings confirm the importance of testing models in long-term conditions to provide a comprehensive view of their phenotype that will refine the study of cellular and molecular mechanisms and complement pre-clinical targeted therapeutic trials.

5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430165

RESUMEN

We used the NanoLuc luciferase bioluminescent reporter system to detect turnip yellows virus (TuYV) in infected plants. For this, TuYV was genetically tagged by replacing the C-terminal part of the RT protein with full-length NanoLuc (TuYV-NL) or with the N-terminal domain of split NanoLuc (TuYV-N65-NL). Wild-type and recombinant viruses were agro-infiltrated in Nicotiana benthamiana, Montia perfoliata, and Arabidopsis thaliana. ELISA confirmed systemic infection and similar accumulation of the recombinant viruses in N. benthamiana and M. perfoliata but reduced systemic infection and lower accumulation in A. thaliana. RT-PCR analysis indicated that the recombinant sequences were stable in N. benthamiana and M. perfoliata but not in A. thaliana. Bioluminescence imaging detected TuYV-NL in inoculated and systemically infected leaves. For the detection of split NanoLuc, we constructed transgenic N. benthamiana plants expressing the C-terminal domain of split NanoLuc. Bioluminescence imaging of these plants after agro-infiltration with TuYV-N65-NL allowed the detection of the virus in systemically infected leaves. Taken together, our results show that NanoLuc luciferase can be used to monitor infection with TuYV.


Asunto(s)
Arabidopsis , Brassica napus , Virus de Plantas , Virosis , Arabidopsis/genética , Enfermedades de las Plantas/genética , Virus de Plantas/genética , Plantas Modificadas Genéticamente/genética , Células Clonales
6.
Microbiol Spectr ; 10(4): e0013622, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35856906

RESUMEN

Evidence is accumulating that plant viruses alter host plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, we lack a mechanistic understanding of the genetic basis of these indirect, plant-mediated effects on vectors, their dependence on the plant host, and their relation to the mode of virus transmission. Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity more strongly than did infection with TuYV. Overall, infection with CaMV, relying on the noncirculative transmission mode, tends to have effects on metabolic pathways, with strong potential implications for insect vector-plant host interactions (e.g., photosynthesis, jasmonic acid, ethylene, and glucosinolate biosynthetic processes), while TuYV, using the circulative transmission mode, alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact both aphid probing and feeding behavior on infected host plants, with potentially distinct effects on virus transmission. IMPORTANCE Plant viruses change the phenotype of their plant hosts. Some of the changes impact interactions of the plant with insects that feed on the plants and transmit these viruses. These modifications may result in better virus transmission. We examine here the transcriptomes of two plant species infected with two viruses with different transmission modes to work out whether there are plant species-specific and transmission mode-specific transcriptome changes. Our results show that both are the case.


Asunto(s)
Áfidos , Arabidopsis , Virus , Animales , Áfidos/genética , Arabidopsis/genética , Conducta Alimentaria/fisiología , Perfilación de la Expresión Génica , Enfermedades de las Plantas , Virus/genética
7.
BMC Genomics ; 23(1): 333, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35488202

RESUMEN

BACKGROUND: Poleroviruses, such as turnip yellows virus (TuYV), are plant viruses strictly transmitted by aphids in a persistent and circulative manner. Acquisition of either virus particles or plant material altered by virus infection is expected to induce gene expression deregulation in aphids which may ultimately alter their behavior. RESULTS: By conducting an RNA-Seq analysis on viruliferous aphids fed either on TuYV-infected plants or on an artificial medium containing purified virus particles, we identified several hundreds of genes deregulated in Myzus persicae, despite non-replication of the virus in the vector. Only a few genes linked to receptor activities and/or vesicular transport were common between the two modes of acquisition with, however, a low level of deregulation. Behavioral studies on aphids after virus acquisition showed that M. persicae locomotion behavior was affected by feeding on TuYV-infected plants, but not by feeding on the artificial medium containing the purified virus particles. Consistent with this, genes potentially involved in aphid behavior were deregulated in aphids fed on infected plants, but not on the artificial medium. CONCLUSIONS: These data show that TuYV particles acquisition alone is associated with a moderate deregulation of a few genes, while higher gene deregulation is associated with aphid ingestion of phloem from TuYV-infected plants. Our data are also in favor of a major role of infected plant components on aphid behavior.


Asunto(s)
Áfidos , Brassica napus , Luteoviridae , Virus de Plantas , Animales , Áfidos/fisiología , Virus ADN , Expresión Génica , Luteoviridae/fisiología , Enfermedades de las Plantas , Virus de Plantas/fisiología
8.
Genes (Basel) ; 12(11)2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34828439

RESUMEN

Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.


Asunto(s)
Síndrome de Down/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
9.
Nucleic Acids Res ; 49(19): 11274-11293, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34614168

RESUMEN

In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Proteínas de Ciclo Celular/genética , Interacciones Huésped-Patógeno/genética , Luteoviridae/genética , Enfermedades de las Plantas/genética , Ribonucleasa III/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Arabidopsis/inmunología , Arabidopsis/virología , Proteínas de Arabidopsis/inmunología , Proteínas Argonautas/inmunología , Proteínas de Ciclo Celular/inmunología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica , Genes Supresores , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/inmunología , Luteoviridae/crecimiento & desarrollo , Luteoviridae/metabolismo , Floema/genética , Floema/inmunología , Floema/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Interferencia de ARN , Ribonucleasa III/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas Virales/metabolismo
10.
PLoS Genet ; 17(9): e1009777, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34587162

RESUMEN

Perturbation of the excitation/inhibition (E/I) balance leads to neurodevelopmental diseases including to autism spectrum disorders, intellectual disability, and epilepsy. Loss-of-function mutations in the DYRK1A gene, located on human chromosome 21 (Hsa21,) lead to an intellectual disability syndrome associated with microcephaly, epilepsy, and autistic troubles. Overexpression of DYRK1A, on the other hand, has been linked with learning and memory defects observed in people with Down syndrome (DS). Dyrk1a is expressed in both glutamatergic and GABAergic neurons, but its impact on each neuronal population has not yet been elucidated. Here we investigated the impact of Dyrk1a gene copy number variation in glutamatergic neurons using a conditional knockout allele of Dyrk1a crossed with the Tg(Camk2-Cre)4Gsc transgenic mouse. We explored this genetic modification in homozygotes, heterozygotes and combined with the Dp(16Lipi-Zbtb21)1Yey trisomic mouse model to unravel the consequence of Dyrk1a dosage from 0 to 3, to understand its role in normal physiology, and in MRD7 and DS. Overall, Dyrk1a dosage in postnatal glutamatergic neurons did not impact locomotor activity, working memory or epileptic susceptibility, but revealed that Dyrk1a is involved in long-term explicit memory. Molecular analyses pointed at a deregulation of transcriptional activity through immediate early genes and a role of DYRK1A at the glutamatergic post-synapse by deregulating and interacting with key post-synaptic proteins implicated in mechanism leading to long-term enhanced synaptic plasticity. Altogether, our work gives important information to understand the action of DYRK1A inhibitors and have a better therapeutic approach.


Asunto(s)
Trastorno Autístico/genética , Trastornos del Conocimiento/genética , Síndrome de Down/genética , Dosificación de Gen , Ácido Glutámico/metabolismo , Discapacidad Intelectual/genética , Neuronas/metabolismo , Trastornos del Habla/genética , Animales , Encéfalo/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Trastornos del Conocimiento/complicaciones , Modelos Animales de Enfermedad , Síndrome de Down/complicaciones , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Proteómica/métodos , Transmisión Sináptica/genética , Transcripción Genética
11.
Mol Syndromol ; 12(4): 202-218, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34421499

RESUMEN

Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21.

12.
PLoS One ; 16(7): e0242236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34292972

RESUMEN

People with Down syndrome (DS), caused by trisomy of chromosome 21 have a greatly increased risk of developing Alzheimer's disease (AD). This is in part because of triplication of a chromosome 21 gene, APP. This gene encodes amyloid precursor protein, which is cleaved to form amyloid-ß that accumulates in the brains of people who have AD. Recent experimental results demonstrate that a gene or genes on chromosome 21, other than APP, when triplicated significantly accelerate amyloid-ß pathology in a transgenic mouse model of amyloid-ß deposition. Multiple lines of evidence indicate that cysteine cathepsin activity influences APP cleavage and amyloid-ß accumulation. Located on human chromosome 21 (Hsa21) is an endogenous inhibitor of cathepsin proteases, CYSTATIN B (CSTB) which is proposed to regulate cysteine cathepsin activity in vivo. Here we determined if three copies of the mouse gene Cstb is sufficient to modulate amyloid-ß accumulation and cathepsin activity in a transgenic APP mouse model. Duplication of Cstb resulted in an increase in transcriptional and translational levels of Cstb in the mouse cortex but had no effect on the deposition of insoluble amyloid-ß plaques or the levels of soluble or insoluble amyloid-ß42, amyloid-ß40, or amyloid-ß38 in 6-month old mice. In addition, the increased CSTB did not alter the activity of cathepsin B enzyme in the cortex of 3-month or 6-month old mice. These results indicate that the single-gene duplication of Cstb is insufficient to elicit a disease-modifying phenotype in the dupCstb x tgAPP mice, underscoring the complexity of the genetic basis of AD-DS and the importance of multiple gene interactions in disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Catepsina B/metabolismo , Cistatina B/genética , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Corteza Cerebral/enzimología , Corteza Cerebral/metabolismo , Cistatina B/metabolismo , Modelos Animales de Enfermedad , Femenino , Duplicación de Gen , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
Mol Plant Pathol ; 22(8): 911-920, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33993609

RESUMEN

Emerging evidence suggests that viral infection modifies host plant traits that in turn alter behaviour and performance of vectors colonizing the plants in a way conducive for transmission of both nonpersistent and persistent viruses. Similar evidence for semipersistent viruses like cauliflower mosaic virus (CaMV) is scarce. Here we compared the effects of Arabidopsis infection with mild (CM) and severe (JI) CaMV isolates on the feeding behaviour (recorded by the electrical penetration graph technique) and fecundity of the aphid vector Myzus persicae. Compared to mock-inoculated plants, feeding behaviour was altered similarly on CM- and JI-infected plants, but only aphids on JI-infected plants had reduced fecundity. To evaluate the role of the multifunctional CaMV protein P6-TAV, aphid feeding behaviour and fecundity were tested on transgenic Arabidopsis plants expressing wild-type (wt) and mutant versions of P6-TAV. In contrast to viral infection, aphid fecundity was unchanged on all transgenic lines, suggesting that other viral factors compromise fecundity. Aphid feeding behaviour was modified on wt P6-CM-, but not on wt P6-JI-expressing plants. Analysis of plants expressing P6 mutants identified N-terminal P6 domains contributing to modification of feeding behaviour. Taken together, we show that CaMV infection can modify both aphid fecundity and feeding behaviour and that P6 is only involved in the latter.


Asunto(s)
Áfidos , Arabidopsis , Animales , Arabidopsis/genética , Caulimovirus/genética , Conducta Alimentaria , Plantas Modificadas Genéticamente
14.
Hum Mol Genet ; 30(9): 771-788, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33693642

RESUMEN

Down syndrome (DS) is the most common genetic form of intellectual disability caused by the presence of an additional copy of human chromosome 21 (Hsa21). To provide novel insights into genotype-phenotype correlations, we used standardized behavioural tests, magnetic resonance imaging and hippocampal gene expression to screen several DS mouse models for the mouse chromosome 16 region homologous to Hsa21. First, we unravelled several genetic interactions between different regions of chromosome 16 and how they contribute significantly to altering the outcome of the phenotypes in brain cognition, function and structure. Then, in-depth analysis of misregulated expressed genes involved in synaptic dysfunction highlighted six biological cascades centred around DYRK1A, GSK3ß, NPY, SNARE, RHOA and NPAS4. Finally, we provide a novel vision of the existing altered gene-gene crosstalk and molecular mechanisms targeting specific hubs in DS models that should become central to better understanding of DS and improving the development of therapies.


Asunto(s)
Síndrome de Down , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cognición , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/patología , Hipocampo/metabolismo , Ratones , Ratones Transgénicos
15.
Oecologia ; 194(3): 429-440, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32996004

RESUMEN

A growing number of studies suggest that plant viruses manipulate host plant phenotypes to increase transmission-conducive behaviors by vectors. Studies on this phenomenon frequently omit examination of interactions that occur after vectors acquire virions, which provides an incomplete understanding of the ecology of plant virus manipulation. Here, by taking a full factorial approach that considered both the infection status of the host (Montia perfoliata) and viruliferous status of the aphid (Myzus persicae), we explored the effects of a circulative, non-propagative virus (Turnip yellows virus [TuYV]) on a suite of behavior and performance metrics that are relevant for virus transmission. Our results demonstrate that viruliferous aphids exhibited an increased velocity of movement and increased activity levels in locomotor and dispersal-retention assays. They also had increased fecundity and showed a capacity to more efficiently exploit resources by taking less time to reach the phloem and ingesting more sap, regardless of plant infection status. In contrast, non-viruliferous aphids only exhibited enhanced fecundity and biomass on TuYV-infected hosts, and had overall reduced dispersal and locomotor activity relative to viruliferous aphids. In this pathosystem, post-acquisition effects were stronger and more conducive to virus transmission than the purely pre-acquisition effects mediated by virus effects on the host plant. Our study provides additional support for the hypothesis that virus manipulation of vector behavior includes both pre- and post-acquisition effects and demonstrates the importance of considering both components when studying putative virus manipulation strategies.


Asunto(s)
Áfidos , Brassica napus , Virus , Animales , Enfermedades de las Plantas
16.
Virologie (Montrouge) ; 24(3): 177-192, 2020 06 01.
Artículo en Francés | MEDLINE | ID: mdl-32648551

RESUMEN

Many plant and vertebrate viruses use mobile vectors to be transmitted between hosts. These vectors, mainly arthropods, acquire or inoculate the virus by feeding on plant extract or vertebrate blood. Several virus transmission modes have been characterized based on the tight interactions between the virus and the vector. Some viruses are internalized into cells and migrate through different tissues and organs before being released. In the vector, the virus can replicate in some cases. Other viruses are retained, specifically or non-specifically, on the vector mouthparts. Acquiring knowledge on the molecular mechanisms of virus transmission by arthropods consists in studying (i) virus receptors in the vectors, (ii) the mode of virus uptake into vector cells, (iii) virus localization and transport in the vector, and (iv) viral determinants required for transmission. This review, although non exhaustive, presents a state-of-the-art of plant and vertebrate virus transmission by arthropods, notably by pointing to their similarities and differences.


Asunto(s)
Artrópodos , Plantas , Vertebrados , Virus , Animales , Artrópodos/virología , Vectores de Enfermedades , Plantas/virología , Vertebrados/virología
17.
Viruses ; 12(2)2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012755

RESUMEN

During the process of virus acquisition by aphids, plants respond to both the virus and the aphids by mobilizing different metabolic pathways. It is conceivable that the plant metabolic responses to both aggressors may be conducive to virus acquisition. To address this question, we analyze the accumulation of the phloem-limited polerovirus Turnip yellows virus (TuYV), which is strictly transmitted by aphids, and aphid's life traits in six Arabidopsis thaliana mutants (xth33, ss3-2, nata1, myc234, quad, atr1D, and pad4-1). We observed that mutations affecting the carbohydrate metabolism, the synthesis of a non-protein amino acid and the glucosinolate pathway had an effect on TuYV accumulation. However, the virus titer did not correlate with the virus transmission efficiency. Some mutations in A.thaliana affect the aphid feeding behavior but often only in infected plants. The duration of the phloem sap ingestion phase, together with the time preceding the first sap ingestion, affect the virus transmission rate more than the virus titer did. Our results also show that the aphids reared on infected mutant plants had a reduced biomass regardless of the mutation and the duration of the sap ingestion phase.


Asunto(s)
Áfidos/fisiología , Arabidopsis/genética , Conducta Alimentaria , Luteoviridae/fisiología , Redes y Vías Metabólicas/genética , Mutación , Animales , Áfidos/virología , Femenino , Insectos Vectores/fisiología , Insectos Vectores/virología , Luteoviridae/genética , Floema/virología , Enfermedades de las Plantas/virología
18.
Prog Brain Res ; 251: 91-143, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32057313

RESUMEN

The genotype-phenotype relationship and the physiopathology of Down Syndrome (DS) have been explored in the last 20 years with more and more relevant mouse models. From the early age of transgenesis to the new CRISPR/CAS9-derived chromosomal engineering and the transchromosomic technologies, mouse models have been key to identify homologous genes or entire regions homologous to the human chromosome 21 that are necessary or sufficient to induce DS features, to investigate the complexity of the genetic interactions that are involved in DS and to explore therapeutic strategies. In this review we report the new developments made, how genomic data and new genetic tools have deeply changed our way of making models, extended our panel of animal models, and increased our understanding of the neurobiology of the disease. But even if we have made an incredible progress which promises to make DS a curable condition, we are facing new research challenges to nurture our knowledge of DS pathophysiology as a neurodevelopmental disorder with many comorbidities during ageing.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Down/genética , Técnicas de Transferencia de Gen , Ingeniería Genética , Animales
19.
Int J Mol Sci ; 20(13)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277202

RESUMEN

Xiphinema index is an important plant parasitic nematode that induces direct damages and specifically transmits the Grapevine fanleaf virus, which is particularly harmful for grapevines. Genomic resources of this nematode species are still limited and no functional gene validation technology is available. RNA interference (RNAi) is a powerful technology to study gene function and here we describe the application of RNAi on several genes in X. index. Soaking the nematodes for 48 h in a suspension containing specific small interfering RNAs resulted in a partial inhibition of the accumulation of some targeted mRNA. However, low reproducible silencing efficiency was observed which could arise from X. index silencing pathway deficiencies. Indeed, essential accustomed proteins for these pathways were not found in the X. index proteome predicted from transcriptomic data. The most reproducible silencing effect was obtained when targeting the piccolo gene potentially involved in endo-exocytosis of synaptic molecules. This represents the first report of gene silencing in a nematode belonging to the Longidoridae family.


Asunto(s)
Regulación de la Expresión Génica , Nematodos/genética , ARN Interferente Pequeño/metabolismo , Animales , Nematodos/metabolismo , Enfermedades de las Plantas , Interferencia de ARN , Vitis/parasitología
20.
PLoS One ; 14(3): e0213087, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30840696

RESUMEN

The split GFP technique is based on the auto-assembly of GFP when two polypeptides-GFP1-10 (residues 1-214; the detector) and GFP11 (residues 215-230; the tag)-both non-fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells displayed in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.


Asunto(s)
Arabidopsis/virología , Caulimovirus/patogenicidad , Proteínas Fluorescentes Verdes/genética , Proteínas Virales/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Caulimovirus/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/virología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...